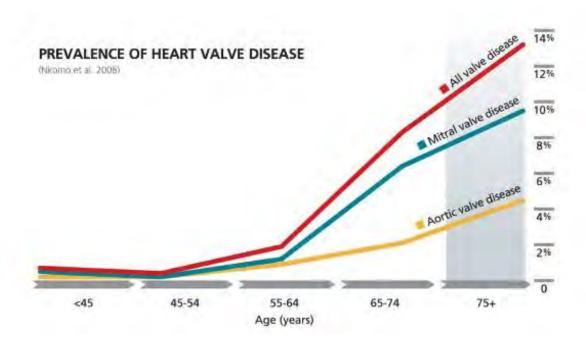


Rehabilitation Management of Transcatheter Heart Procedures

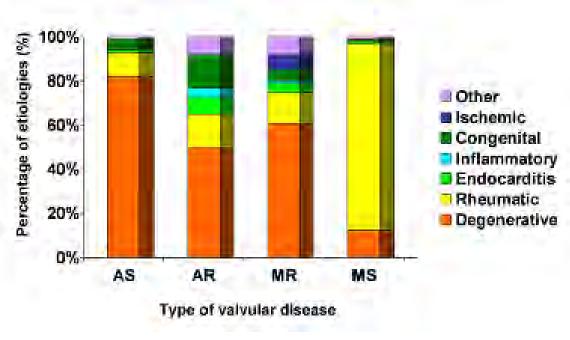
Disclosures

None

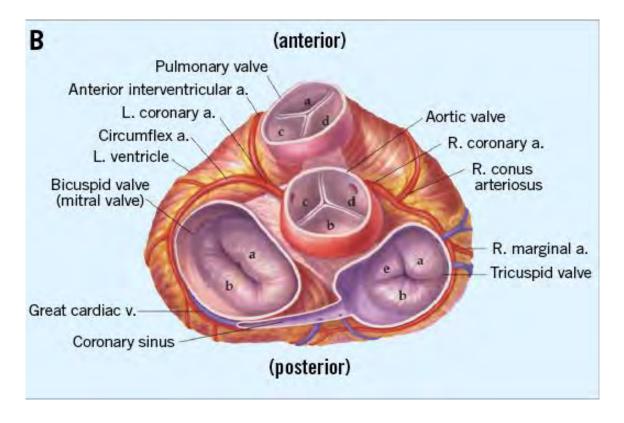


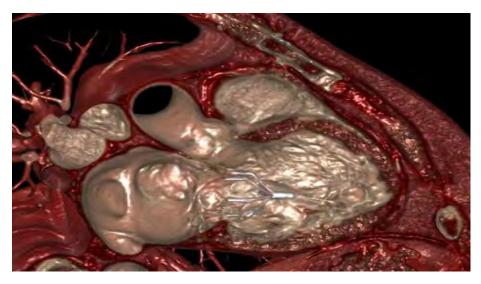
Objectives

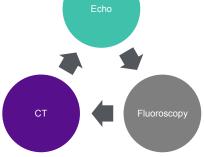
- Discuss Current State of Transcatheter Procedures
- Review Evidence and Future Studies
- Describe Rehabilitative Management across the Continuum of Care



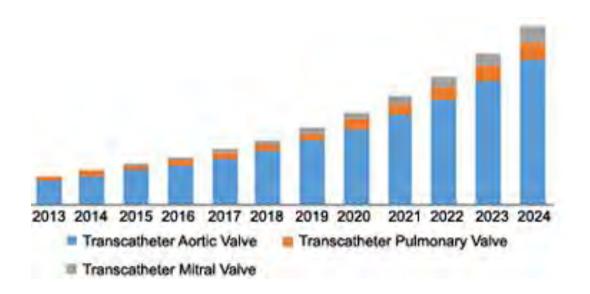
Heart Valve Disease Incidence

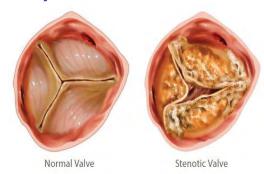

Heart Valve Disease Incidence


Valve Anatomy

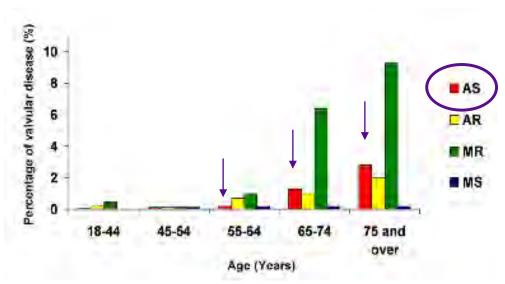


Advances in Technology, Technique, and Imaging





Projected Growth


Aortic Stenosis (AS)

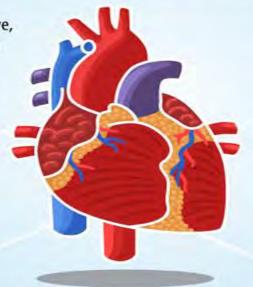
Congenital Abnormality	Rheumatic Fever	Infection	Age-Related Calcific Aortic Stenosis
In some cases adults may develop aortic stenosis resulting from a congenital abnormality.	Adults who have had rheumatic fever may also be at risk for aortic stenosis.	Aortic stenosis can be caused by various infections.	Aortic stenosis in patients over the age of 65 is usually caused by calcific (calcium) deposits associated with aging.

Aortic Valve Disease Incidence

- ≤0.2% before 65 years of age
- 1.3% between 65 and 74 years
- 2.8% after 75 years

Epidemiology

AT THE HEART OF AORTIC STENOSIS

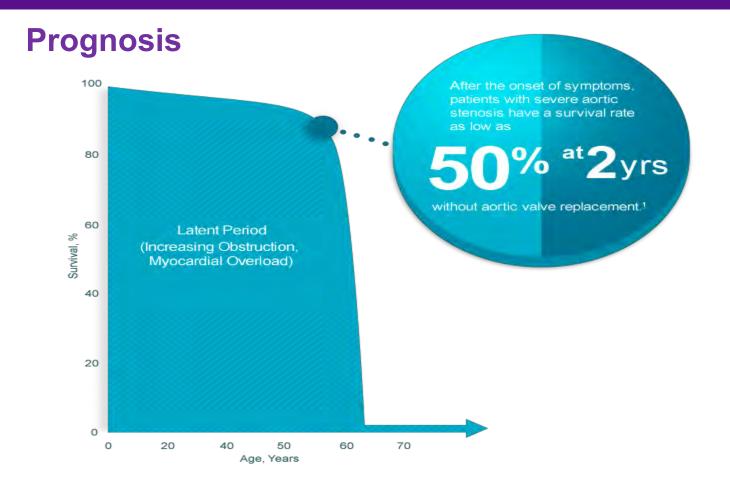

Aortic Stenosis is a narrowed aortic valve, commonly due to calcium build-up, that limits its ability to open and close properly, which reduces blood flow to the rest of the body

100k

people in the U.S. are diagnosed with severe aortic stenosis each year

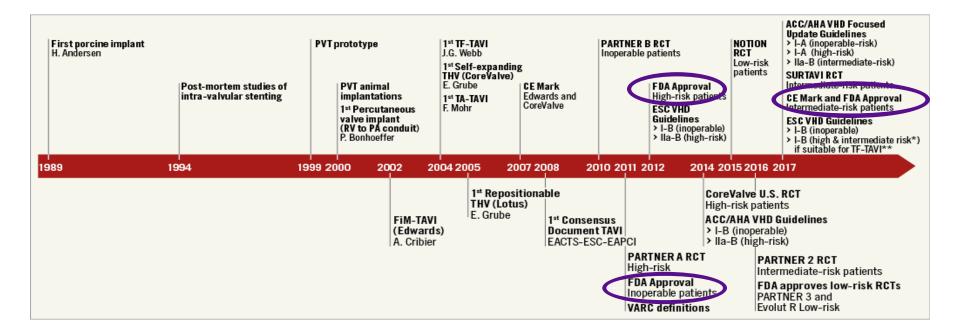
¹ Makkar R, Fontana G, Jilaihawi H, et al. Transcatheter Aortic-Valve Reglacement for Inoperable Severe Aortic Stenosis. N Engl J Med. 2012; 366:1696-1794.

33% 🏯


of these patients are deemed too high risk for open heart surgery

50% TATA

of patients at extreme risk for openheart surgery will die from severe aortic stenosis within one year if left untreated[†]



^{*} lung B, Cachier A, Baron G, et al. Decision-making in elderly patients with severe aortic stenosis: why are so many denied surgery? Eur Heart T. 2003; 20:2714-2720.

Evidence: Timeline of TAVR Evolution

Literature

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

OCTOBER 21, 2010

VOL. 363 NO. 17

Transcatheter Aortic-Valve Implantation in Patients Who Cannot Unders

Martin B. Leon, M.D., Craig R. Smith, M.D., Michael Mack, M.D., D. Craig N Lars G. Svensson, M.D., Ph.D., E. Murat Tuzcu, M.D., John G. Webb, N Raj R. Makkar, M.D., David L. Brown, M.D., Peter C. Block, M.D., Augusto D. Pichard, M.D., Joseph E. Bavaria, M.D., Howard C. Herrmann John L. Petersen, M.D., Jodi J. Akin, M.S., William N. Anderson, P and Stuart Pocock, Ph.D., for the PARTNER Trial Im

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JUNE 9, 2011

VOL. 364 NO. 23

Transcatheter and Surgical Aortic-Valve in High-Risk Patients

Craig R. Smith, M.D., Martin B. Leon, M.D., Michael J. Mack, M.D., D. Craig Mill Lars G. Svensson, M.D., Ph.D., E. Murat Tuzcu, M.D., John G. Webb, M.D. Raj R. Makkar, M.D., Mathew Williams, M.D., Todd Dewey, M.D., Samir Kapadii Vinod H. Thourani, M.D., Paul Corso, M.D., Augusto D. Pichard, M.D., Howard C. Herrmann, M.D., Jodi J. Akin, M.S., William N. Anderson, Ph and Stuart J. Pocock, Ph.D., for the PARTNER Trial Inves

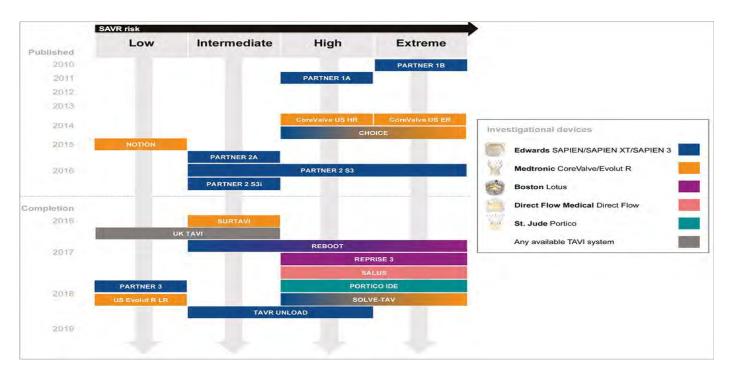
The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

APRIL 28, 2016

VOL. 374 NO. 17

Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients


Martin B. Leon, M.D., Craig R. Smith, M.D., Michael J. Mack, M.D., Raj R. Makkar, M.D.,
Lars G. Svensson, M.D., Ph.D., Susheel K. Kodali, M.D., Vinod H. Thourant, M.D., E. Murat Tuzcu, M.D.,
D. Craig Miller, M.D., Howard C. Herrmann, M.D., Darshan Doshi, M.D., David J. Cohen, M.D.,
Augusto D. Pichard, M.D., Samir Kapadia, M.D., Todd Dewey, M.D., Vasilis Babaliaros, M.D.,
Wilson Y. Szeto, M.D., Mathew R. Williams, M.D., Dean Kereiakes, M.D., Alan Zajarias, M.D.,
Kevin L. Greason, M.D., Brian K. Whisenant, M.D., Robert W. Hodson, M.D., Jeffrey W. Moses, M.D.,
Alfredo Trento, M.D., David L. Brown, M.D., William F. Fearon, M.D., Philippe Pibarot, D.V.M., Ph.D.,
Rebecca T. Hahn, M.D., Wael A. Jaber, M.D., William N. Anderson, Ph.D., Maria C. Alu, M.M.,
and John G. Webb, M.D., for the PARTNER 2 Investigators*

Partner A&B, II

Corevalve, SurTavi

TAVI Trials: Impact on Clinical Practice

SAVR vs TAVR: Current Guidelines

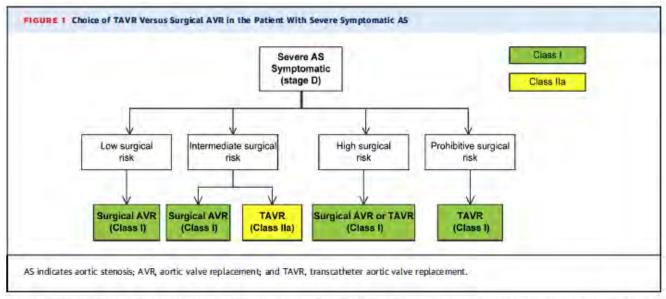
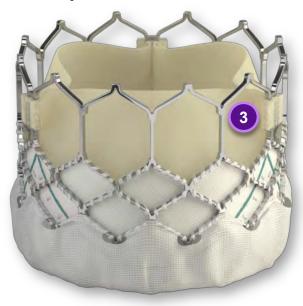
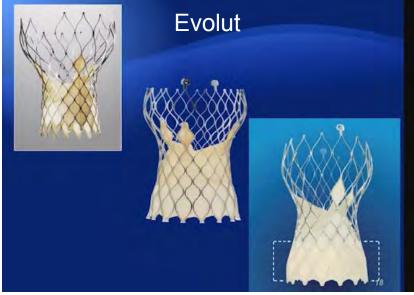



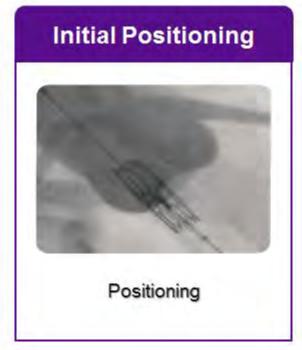
Figure 1. American Heart Association/American College of Cardiology guidelines recommendations for TAVR versus surgical aortic valve replacement in severe AS. Adapted from Nishimura RA et all and reprinted with permission from the Journal of the American College of Cardiology, Publisher: Elsevier. Abbreviations: AS, aortic stenosis; AVR, aortic valve replacement; TAVR, transcatheter aortic valve replacement.

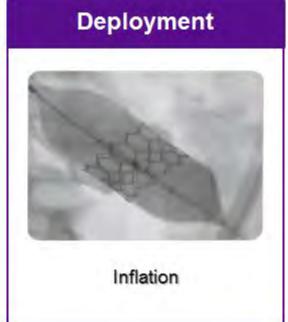
TAVR: Valve Systems

Sapien 3 Valve

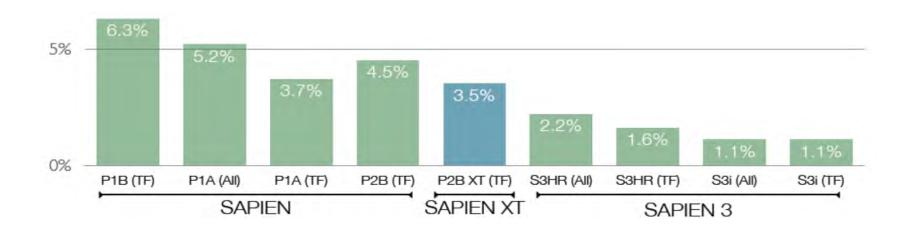

Evolut Pro Valve

Device Evolution



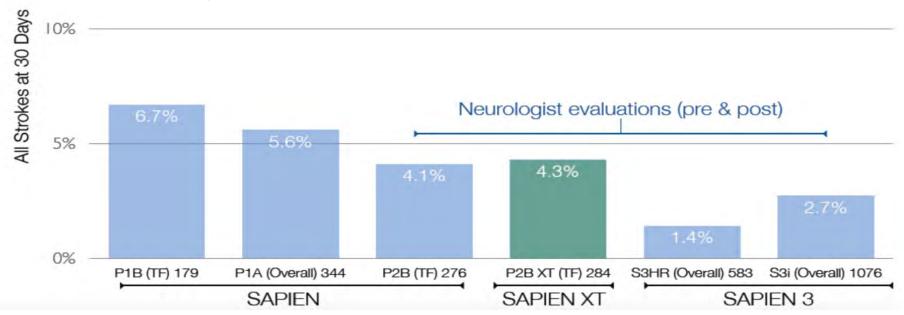

TAVR: Evolut Pro

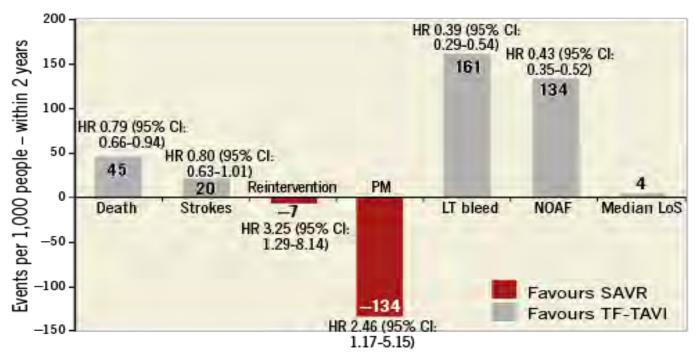
TAVR: Sapien 3



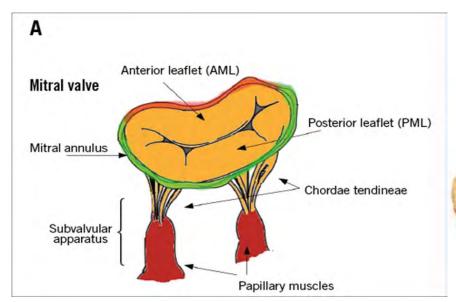
Mortality Rates

30-Day Mortality Rates with SAPIEN Valves in PARTNER I and II trials




Stroke Rates

30-Day Stroke Rates with SAPIEN Valves in PARTNER I and II trials


TAVR vs SAVR

Comparison of major clinical outcomes between transcatheter aortic valve implantation (TAVI) and surgical aortic valve replacement (SAVR).

NYU Langone

Mitral Valve Anatomy

Normal AORTIC valve in adult humans is roughly the size of a US nickel or dime. 2-4 cm² Normal TRICUSPID valve in adult humans is roughly

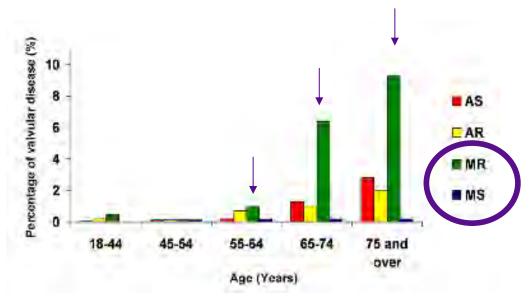
Normal MITRAL valve area in adult humans is roughly the size of a **US quarter.**

4-6 cm²

US half-dollar coin.

6-8 cm²

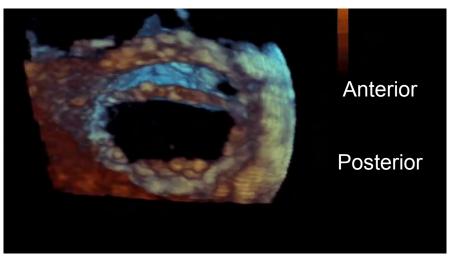
the size of a

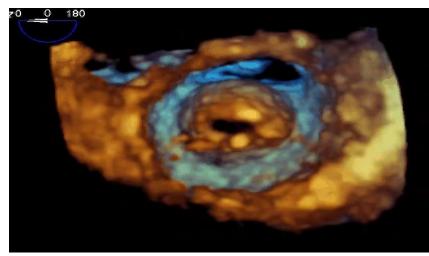


Mitral Valve Disease

Mitral Stenosis	Acute Mitral Regurgitation	Chronic Mitral Regurgitation
 Rheumatic - Majority Congenital Prosthetic valve stenosis Mitral Annular Calcification Left Atrial Myxoma 	 Infective endocarditis Ischemic Heart disease Mitral valve prolapse Chordal rupture Papillary muscle rupture Chest trauma 	Papillary ms dysfunction Inferior & posterior MI Mitral Valve prolapse Infective endocarditis Rheumatic Prosthetic Mitral annular calcification Cardiomyopathy LV dilatation

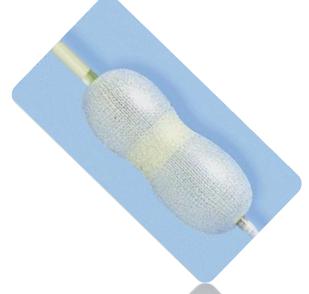
Mitral Valve Disease Incidence




- MR most common
- MS rare with estimates of 0.1%
- Increased risk with normal aging

NORMAL MITRAL VALVE VS. RHEUMATIC MITRAL STENOSIS

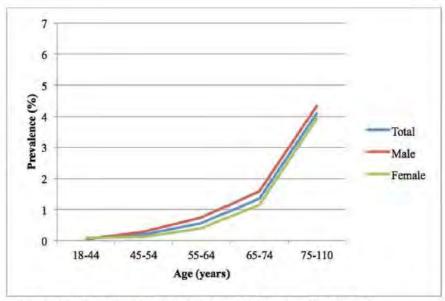
Mitral valve seen from **left ventricular** perspective



Normal mitral valve

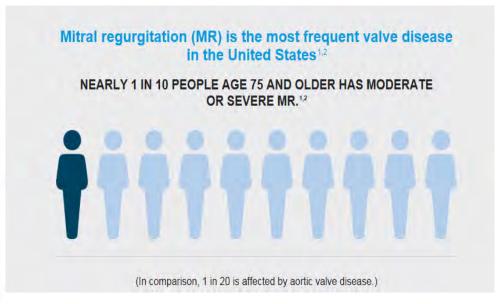
Severe mitral stenosis

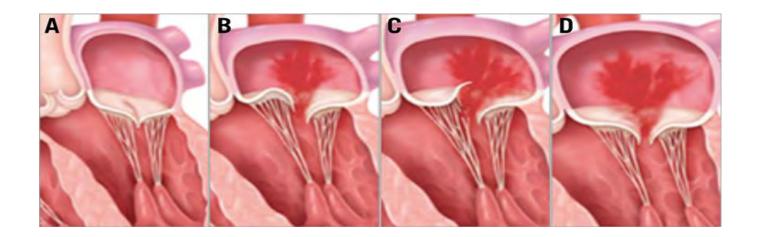
Percutaneous Mitral Balloon Valvuloplasty


The balloon is reinforced with a nylon micromesh. Its shape changes in 3 stages, depending on the extent of inflation

Fluoroscopic guidance of PMBV

Mitral Regurgitation Incidence



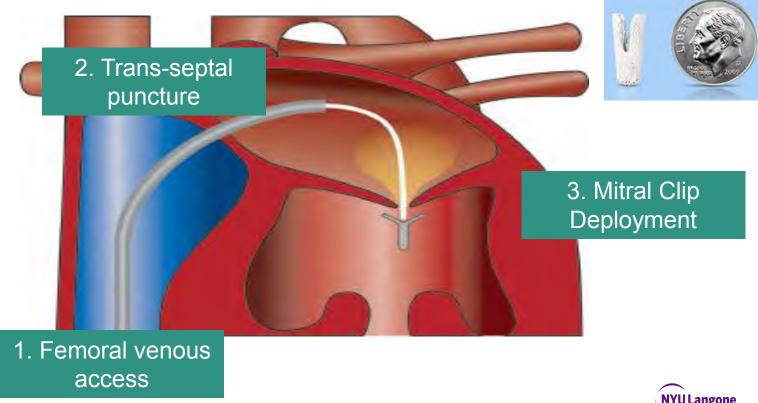

Figure: Prevalence of isolated moderate to severe MR according to age and sex

JACC April 5, 2016 Volume 67, Issue 13

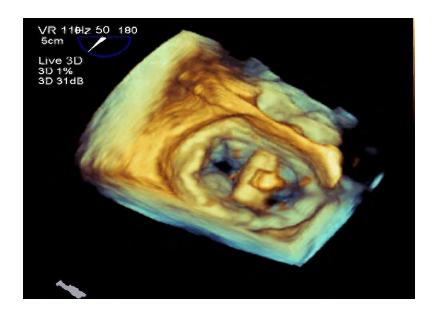
2017 EuroIntervention. All rights reserved

Mechanism of Mitral Regurgitation

Types of mitral regurgitation. A) Normal mitral valve. B) Degenerative MR caused by mitral leaflet prolapse. C) Degenerative MR caused by flail leaflet. D) Functional MR caused by dilated ventricle and tethering of the mitral leaflets.


Transcatheter Mitral Valve Repair Technologies

Company	Abbott	NeoChord	Cardiac Dimensions	Valtech Cardio	Mitralign
Name	MitraClip	DS1000	Carillon*	Cardioband	Bident
	× 11	Ch.		A STORY	
Description	Edge-to-edge technique	Implantation through TA access	Coronary sinus cinching	Transcatheter surgical- like annuloplasty	Plication device
Strengths	Versatility (DMR and FMR)	Solid surgical background	Simplicity	Solid surgical background	Simpler than other direct annuloplasty
Weaknesses	Lack of annuloplasty	TA access	Limited efficacy, unpredictable results	Complexity, advanced imaging	Limited efficacy
MR aetiology	DMR and FMR	DMR	FMR	FMR	FMR
Status	About 40,000 patients worldwide	About 300 patients	About 500 patients	About 100 patients	About 100 patients


DMR: degenerative mitral regurgitation; FMR: functional mitral regurgitation. * Carillon® Mitral Contour System®; Cardiac Dimensions Inc., Kirkland, WA, USA

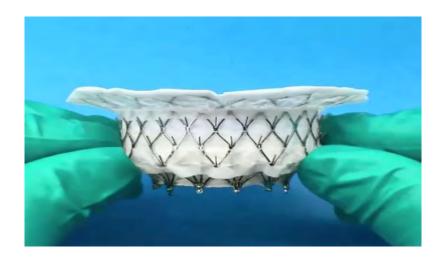
3D TEE GUIDANCE OF MITRAL CLIP PROCEDURE

CLIP POSITION

VR 9Ht 115 180 4cm Live 3D 3D 1% 3D 28dB

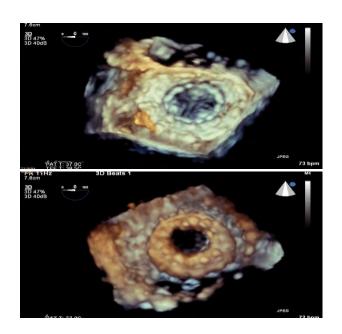
Clip being positioned: note flail segment

Clip released: no more flail segment


Transcatheter Mitral Valve Replacement (TMVR)

Company	Abbott	Edwards	Edwards	Medtronic	Neovasc	
Name	Tendyne	CardiAQ	Fortis	Twelve	Tiara	
					3	
Patients treated	31	12	23	15	15	
First implant	October 2014	June 2012	February 2014	September 2014	January 2014	
Functional aetiology	86%	64%	100%	73%	54%	
Successful deployment	21/23 (91%)	9/11 (82%)	10/13 (77%)	14/15 (93%)	9/11 (82%)	
30-day mortality	1/23 (4%)	5/11 (45%)	5/13 (38%)	2/15 (13%)	3/11 (27%)	
MR grade O at follow-up	19/19 (100%)	na	8/9 (89%)	13/14 (93%)	na	

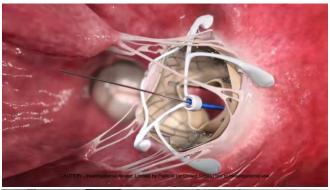
MR: mitral regurgitation; na: not available (adapted from Meredith I. Transcatheter Mitral Valve Implantation: Early Clinical Outcomes. EuroPCR 2016).

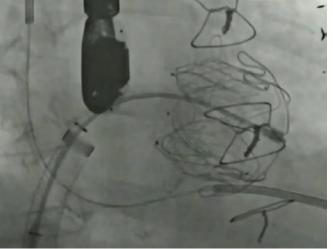

INTREPID – TMVR System

- Conformable Outer Stent engages annulus and leaflets providing fixation and sealing while isolating the inner stent from the dynamic anatomy
- Circular Inner Stent houses a tricuspid bovine pericardium valve
- Flexible Brim

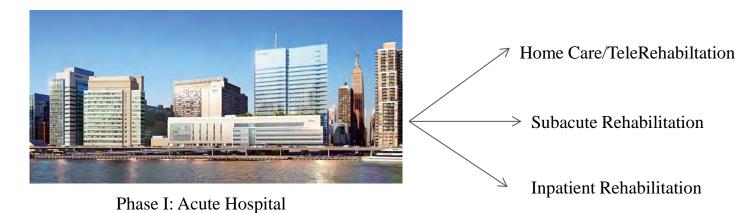
Intrepid Transapical Valve Program

CAISSON Transcatheter MVR





Final Deployment



Rehabilitative Management Across the Continuum

Phase II & III: Outpatient Rehabilitation

Rehabilitation Considerations

Where does your patient fit...

- Inoperable, High Risk, Intermediate, Low Risk???
- Society of Thoracic Surgeons (STS) score:
 - Low Risk
 - Intermediate Risk
 - High Risk
- Comorbid Conditions
- Frailty Score
- How long have they been monitoring (Degree of deconditioning)
- Functional Status

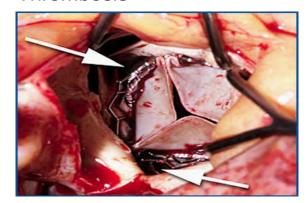
STS Risk Score:

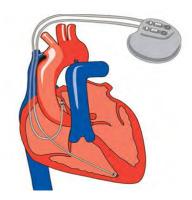
Procedure: AV Replacement Risk of Mortality. 7.444% Morbidity or Mortality: 31.567% Long Length of Stay: 18.976% Short Length of Stay: 9.57% Permanent Stroke: 3.832% Prolonged Ventilation: 22.66% DSW Infection: 0.146% Renal Failure: 12.799% Reoperation: 10.821%

Katz Index of Independence In Activities of daily Living: media

5 meter walk speed:media
6 minute walk: media
Grip test: media
Living situation: alone
Caregiver: none
Greater than 2 Falls in the last six months: No
Has the patient been hospitalized over the last year:No
fyes how many times: n/a

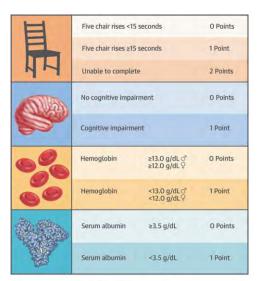
NYHA II CCS no angina




Rehabilitation Considerations

Major Complications

- Bleeding
- Stroke
- Arrhythmia: AF, High Degree AV Blocks, BBB, PPM
- Paravalvular Leak (PVL)
- Thrombosis



Outcomes

- Frailty Tests
 - Grip strength
 - Essential Frailty Tool
 - Katz Index, Barthel Index
 - Timed Up and Go (TUG)
- Functional Testing
 - 5 meter walk speed
 - 6 minute walk test (6MWT)
 - Exercise Tolerance Test (ETT)
 - Cardiopulmonary Exercise Test (CPET)
- Questionnaires
 - KCCQ

	1-Year Mortality		EFT
	SAVR	TAVR	Score
EFT Points:	3%	6%	0-1
2111011121	7%	15%	2
-	16%	28%	3
	38%	30%	4
	50%	65%	5

Frailty in Older Adults Undergoing Aortic Valve Replacement. JACC 2017

Signs and Symptoms

- Subjective: SOB, fatigue, palpitations, Incisional discomfort, Dizzy/lightheaded
- Observation:
 - Edema, Increased RR, JVD
- Examination:
 - Resting Vitals: HR, BP, Spo2
 - Auscultation: rales

 - Incisional location

Assess hemodynamics with self care, transfers, ambulation

Decreased exercise tolerance and work capacity

Acute: Post-op Rehab Guidelines

- Patient will be on bed rest for 3.0 hours post-op
- Therapist evaluates patient 3.0 hours post-op, once hemostasis achieved at catheter access sites and patient's HR and BP stable
- OOB/Ambulation as tolerated with vital signs monitored with each new position change (supine >semifowlers >long sitting > sitting EOB >standing > walking)
- Therapist to make mobility recommendations
 - Activity order based on therapist recommendations
 - Nursing/PCT to follow therapy recommendations
 - Therapy continue to make recommendations daily as patient progresses

Acute: Post-op Therapy Guidelines

- Plan of Care (LOS 2 days)
 - PT Provided (Monday-Sunday)
 - POD #0: 1x
 - POD # 1-2: 1x/discharged

- OT (Monday-Friday, Weekends for Evals only, follow up sessions as need to ensure safe discharge)
 - POD # 1-2: 1x daily

Acute: Post-op Therapy Guidelines

Precautions

- Patients who are in complete heart block or have an extremely slow rhythm (<50bpm) and are TVP dependent should remain on bedrest. Some TVP dependent patients may be allowed OOB to chair for meals (case by case basis)
- If patient cleared for OOB/ambulation with TVP, activity order must be present stating 'patient cleared for OOB/ambulation with TVP'
- Avoid shoulder ROM to side where TVP present
- Ensure TVP stabilized with two anchors prior to mobilizing patient consult NP/PA/RN to reinforce TVP
- Once TVP removed, continue to carefully monitor VS response to activity

Phase II CR Literature

Transcatheter Aortic Valve Replacement: Optimizing Outcomes for Health Recovery.

Table 3

Benefits and Adverse Events of Cardiac Rehabilitation After Transcatheter Aortic Valve Replacement^a

	Reference Number
Benefits	
Improved 6-min walk distance	41, 42, 45, 47, 48
Improved peak oxygen uptake	46, 48
Improved muscular strength, rowing, pull down, and leg press	46
Improved Barthel Index	42, 45,47
Improved quality of life	46
Adverse events	
No major complications were directly associated with the exercise training	42, 47, 49

^{*}Barthel index is a validated scale (0 = total dependence; 100 = total independence) of independence in activities of daily living. 42,49

References @ JCRP 2018, 38:1-7

Phase II Systematic Review

- started cardiac rehabilitation early after TAVR (mean: 26 d)
- improvement in 6-min walk distance from 186 m to 257 m (odds ratio = 0.69; 95% CI, 0.47-0.91; P < .001).
- significant increase (3.7 mL/min/kg) in peak oxygen uptake on a cardiopulmonary exercise test, improved muscular strength, better quality of life, and reduced symptom burden.
- safe and is associated with marked improvements in exercise capacity, functional independence, and frailty parameters, and should be encouraged in all patients.

Cardiac rehabilitation programme after transcatheter aortic valve implantation versus surgical aortic valve replacement: systematic review and meta-analysis. *Eur J Prev Cardiol*. 2017; 24 (7): 688-697.

Outpatient: Rehabilitation Management

Considerations

- Know your patient (comorbidities, STS, Frailty, etc.)
- Emphasis on Function Assessment
 - History of Falls, Balance, Transfers, Gait
- Cardiac Rehabilitation Session
 - Safety, choice the right modalities
- Monitor vitals closely
 - Establish baseline; HR, BP, ECG.
 - Determine if appropriate response to Activity
- Post-discharge recommendations:
 - Ensure post program plan is established

Outpatient:

Exercise Pres

- Driven by Our
 - Frequency:
 - Intensity: T
 - Type: TM, F
 - Time: 60 m
- Home Exercis
- Patient and F

Pre-Rehab	Post-Rehab
01/24/2018	07/12/2018
ACC 16	ACC 16
naughton	naughton
2:01	11:01
1.7	6.3
90	70
111	130
180/100	144/68
190/100	138/80
21090	17940
none	BLA, likely no significant changes
Max HR achieved	Max HR achieved
negative	Likely negative maximal EST for ischemia.
	Pre-Rehab 01/24/2018 ACC 16 naughton 2:01 1.7 90 111 180/100 190/100 21090 none Max HR achieved

Stress Test Percentage Improvement: 270%

Exercise Prescription:

THR: 90-100

THR Changes: none Starting MET Level: 1

RPE: 12 - 13

Predicted DC MET Goal: 3

Exercise Class Progress:

Avg. Starting MET: 3.5 Avg. Recent MET: 4.5 %Improvement: 29%

Percent of DC MET Goal Achieved:

Predicted MET: 3 Actual Met: 4.5 %Achieved: 150%

Exit Ex. Prescriptions:

THR: 110-120 RPE: 11-14

Conclusion

- Percutaneous valve repair/replacement is a rapidly evolving field
- Numerous research trials evaluating new devices and lower risk patients
- Cardiac Rehab need more supportive evidence
 - Standardize approach: Outcomes, Scales, Questionnaires
- Rehabilitation is safe and effective
 - Exercise Capacity: Improved 6MWT distance, Peak VO₂, MET Level
 - Improved Muscle Strength
 - Functional Independence
 - Frailty: Improved tests (Barthel, Katz, etc.)
 - Improved QOL
- Use rehabilitation evidence to help guide medical care

Resources

- Transcatheter Aortic Valve Replacement: Optimizing Outcomes for Health Recovery. JCRP 2018, 38:1-7
- Cardiac rehabilitation program after transcatheter aortic valve implantation versus surgical aortic valve replacement: Systematic review and meta-analysis. European Journal of Preventive Cardiology 2017, 24:688-697.
- Functional Status and Quality of Life After Transcatheter Aortic Valve Replacement: A Systematic Review. Ann Intern Med 2014, 160:243-254.
- Exercise training improves exercise capacity and quality of life after transcatheter aortic valve implantation: A randomized pilot trial. Am Heart J 2016, 182:44-53.
- Predictors and Association With Clinical Outcomes of the Changes in Exercise Capacity After Trans Cather Aortic Valve Replacement. Circulation 2017, 136:632-643.
- TMVR: Continuing the Paradigm Shift in Valvular Heart Disease Therapy. JACC 2015, 66:9 1020-1022
- Transcatheter Mitral Valve Replacement Clears the First Hurdle. JACC 2017, 69:4 392-394.

