Latest treatment approaches for patients with PAD
Management of the condition with exercise

Paul B. Kreienberg MD
Professor of Surgery
Program Director Vascular Surgery
Residency and Fellowship
Albany Medical Center
Goals

• Identify patients with PAD using history, physical exam and appropriate noninvasive testing

• Treat PAD patients with:
 – risk factor modification including antiplatelet therapies, to decrease the risk of MI and stroke
 – Therapies to improve limb status
PAD

• Asymptomatic
• Claudication
• Rest Pain
• Tissue Loss - Gangrene or ulceration
Vascular Disease in the US

<table>
<thead>
<tr>
<th></th>
<th>Annual Incidence (Millions)</th>
<th>Prevalence (Millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke</td>
<td>0.73<sup>1</sup></td>
<td>4.6<sup>2</sup></td>
</tr>
<tr>
<td>TIA</td>
<td>0.50<sup>3</sup></td>
<td>4.9<sup>4</sup></td>
</tr>
<tr>
<td>ACS</td>
<td>1.93<sup>5*</sup></td>
<td>12.6<sup>2†</sup></td>
</tr>
<tr>
<td>PAD</td>
<td>---</td>
<td>8–12<sup>6</sup></td>
</tr>
</tbody>
</table>

TIA = transient ischemic attack. ACS = acute coronary syndrome. PAD = peripheral arterial disease.

*Includes coronary insufficiency, nocturnal and variant angina, atrial/papillary and undetermined MI;
†includes history of MI or stable/unstable angina pectoris or both.

PAD-Related Risk Factors

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Relative Risk</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes¹</td>
<td>4.05*</td>
<td>2.8-5.9</td>
</tr>
<tr>
<td>Smoking¹</td>
<td>2.55*</td>
<td>1.76-3.68</td>
</tr>
<tr>
<td>Hyperlipidemia¹</td>
<td>1.10*</td>
<td>1.06-1.14</td>
</tr>
<tr>
<td>(10 mg/dL increase in total cholesterol)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension¹</td>
<td>1.51*</td>
<td>1.15-1.99</td>
</tr>
<tr>
<td>Hyperhomocysteinemia²</td>
<td>1.44†</td>
<td>1.10-1.87</td>
</tr>
</tbody>
</table>

* PAD diagnosis based on ABI <0.90.
† PAD diagnosis based on history of peripheral arterial reconstruction or limb amputation, or an ABI <0.50.

Identifying Patients at Risk for PAD

- Consider PAD in:
 - Any patients with exertional leg pain
 - Patients >50 years old with risk factors
 - All patients >70 years old
Diagnosis and Assessment of Disease Severity

- Vascular history
- Physical examination
- Ankle-brachial index (ABI) measurement
- Noninvasive vascular laboratory tests
Functional Description of Intermittent Claudication

- **Symptoms**
 - Exertional aching pain, cramping, tightness, fatigue
 - Occur in muscle groups, not joints (buttocks, hips, legs, calves)
 - Are reproducible from one day to the next on similar terrain
 - Resolve completely with 2-5 minutes of rest
Common Sites of Claudication

- **Obstruction in**
 - Aorta or iliac artery
 - Femoral artery or branches
 - Popliteal artery or distal

- **Ischemia in**
 - Buttock, hip, thigh
 - Thigh, calf
 - Calf, ankle, foot
Relationship Between Comorbidities and Atypical Leg Symptoms

<table>
<thead>
<tr>
<th>Disease</th>
<th>Atypical/ Carry On (n=41)</th>
<th>Atypical/ Stop (n=90)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuropathy score, mean</td>
<td>4.3</td>
<td>3.1</td>
</tr>
<tr>
<td>Diabetes, %</td>
<td>24.4</td>
<td>26.7</td>
</tr>
<tr>
<td>Disk disease, %</td>
<td>29.3</td>
<td>31.1</td>
</tr>
<tr>
<td>Spinal stenosis, %</td>
<td>9.7</td>
<td>13.6</td>
</tr>
<tr>
<td>Depression, %</td>
<td>5.1</td>
<td>18.8</td>
</tr>
</tbody>
</table>

Does the Patient Have Intermittent Claudication?

<table>
<thead>
<tr>
<th>Characteristic of Discomfort</th>
<th>Claudication</th>
<th>Pseudoclaudication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discomfort</td>
<td>Cramping, tightness, aching, fatigue</td>
<td>Same, tingling, burning, numbness</td>
</tr>
<tr>
<td>Location of Discomfort</td>
<td>Buttock, hip, thigh, calf, foot</td>
<td>Same</td>
</tr>
<tr>
<td>Exercise-induced</td>
<td>Yes</td>
<td>Variable</td>
</tr>
<tr>
<td>Distance</td>
<td>Consistent</td>
<td>Variable</td>
</tr>
<tr>
<td>Occurs with Standing</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Action for Relief</td>
<td>Stand</td>
<td>Sit, change position</td>
</tr>
<tr>
<td>Time to Relief</td>
<td>Less than 5 minutes</td>
<td>Up to 30 minutes</td>
</tr>
</tbody>
</table>
Important Questions for Patients

- Do you develop any cramping or fatigue in the muscles of either leg that occurs when you walk?
- Do symptoms only start when you walk?
- Do symptoms resolve once you stop walking?
- Do the symptoms occur in one or both legs?
- Do you have any nonhealing foot wounds?
Physical Exam

CLINICAL EXAMINATION OF THE PATIENT WITH PAD

- Measure blood pressure in both arms
- Auscultate abdomen for presence of bruits
- Palpate for presence of abdominal aortic aneurysm
- Palpate and record pulses (femoral, popliteal, posterior tibial, dorsalis pedis)
- Evaluate for elevation pallor and dependent rubor
- Inspect feet for ulcers, fissures, calluses, tinea, tendonous xanthomas; evaluate overall skin care
- Measure ankle-brachial index
Office Measurement of the Ankle–Brachial Index (ABI)

Adapted from the PARTNERS Program.
Understanding the ABI

\[
\text{ABI} = \frac{\text{Ankle systolic pressure}}{\text{Brachial artery systolic pressure}}
\]

- Both ankle and brachial systolic pressures should be taken using a hand-held Doppler instrument
- For both arm and leg, use higher of 2 pressures
- The ABI is 95% sensitive and 99% specific for PAD

The Ankle-Brachial Index (ABI)

• ABI measurement is the optimal method to detect PAD
 – Inexpensive, accurate, and office-based
 – Provides an international standard, validated by angiographic detection, for defining PAD prevalence
 – Predicts limb survival, propensity for wound healing, and short- and long-term patient survival\(^1,2\)

• When is an ABI measurement indicated?
 – Presence or suspicion of claudication; pain at rest; or nonhealing foot ulcer
 – Age >70 years or >50 years with risk factors (diabetes, smoking)

PARTNERS

Diagnosis of PAD in High-Risk Patients

29% of patients were diagnosed with PAD using ankle-brachial index

Clinical Presentation of PAD Patients

- Chronic Limb Ischemia
- Acute Limb Ischemia
- Stable Claudication
- Asymptomatic PAD

Peripheral Arterial Disease (PAD) Mortality*

*Kaplan-Meier survival curves based on mortality from all causes.
†Large-vessel PAD.
Decline in Survival Associated With Severity of PAD

ABI = ankle-brachial index, PAD = peripheral arterial disease.

ABI = ankle-brachial index, PAD = peripheral arterial disease.
Correlation of ABI with Leg Function and Physical Activity

- As compared with higher ABI scores, lower ABI scores were consistently associated with:
 - shorter distance walked in 6 minutes
 - lower accelerometer-measured activity over 7 days
 - poorer standing balance
 - slower walking velocity at usual and fast pace
 - lower summary performance scores

- More than 60% of participants with ABI <0.40 had to stop during the 6-minute walk, while fewer than 5% with ABI ≥ 1.0 stopped

Other Noninvasive Diagnostic Tests

- Segmental blood pressure recording
- Segmental pulse volume recording
- Exercise stress testing
- Reactive hyperemia
- CW Doppler and duplex ultrasound

Pulse Volume recorder
Pulse volume recordings

- Require specific equipment and training
- Provide information on level and severity of disease
- Can be used in exercise testing as well
Duplex Ultrasonography

- Duplex Studies
- Provide too much information
- Time consuming
- Expensive
Noninvasive Tests Summary

Noninvasive Vascular Testing for PAD

<table>
<thead>
<tr>
<th>Test</th>
<th>Disease Localization</th>
<th>Quantitation of Disease Severity</th>
<th>Relative Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI</td>
<td>–</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Segmental pressure analysis</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Pulse volume recordings</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Transcutaneous oximetry</td>
<td>+</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Doppler waveform analysis</td>
<td>+++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Arterial duplex</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Exercise Doppler</td>
<td>–</td>
<td>+++</td>
<td>+++</td>
</tr>
</tbody>
</table>
Arteriography

- Provides an anatomic but not a physiologic assessment
- Perform only when considering a revascularization intervention (eg, surgery, PTA, stents)
- Always assess inflow and outflow (ie, aortogram with runoffs)
Peripheral Arterial Disease: Disease Management
Progression of Intermittent Claudication

Population >55 yr

Intermittent Claudication 5%

Peripheral Vascular Outcomes

Worsening Claudication 16%

Lower Extremity Bypass Surgery 7%

Major Amputation 4%

Other Cardiovascular Morbidity/Total Mortality

Nonfatal Cardiovascular Event (MI/Stroke, 5-year Rate) 20%

5-yr Mortality 30%

Cardiovascular Cause 75%

Adapted from Weitz JI et al. Circulation. 1996;94:3026-3049.
PAD Management: Treatment Goals

- Reduce risk of MI and stroke
- Relieve symptoms of claudication by
 - Supervised exercise (regular, structured, cardiac rehabilitation model)
 - Pharmacotherapy
 - Revascularization (endovascular or surgical)
PAD Management: Prevention of Ischemic Events

Risk factor modification

- Smoking cessation
 - Goal: complete cessation
- Lipid management
 - Initiate therapy at LDL > 70 mg/dL
- Blood pressure control
 - Goal <120/70 mm Hg\(^1\)
 - 130/80 if diabetic
- Blood sugar control (diabetic patients)
 - Goal: HbA\(_{1c}\) <6.5\%\(^2\)

Physical Activity
- 30 min / day

Weight
- BMI 18-25

A-Fib
- NSR or INR 2-3

Antiplatelet therapies

Goal: reduction in risk of MI, stroke, and vascular death

CAPRIE Study
Distribution of Symptomatic Atherosclerosis in CAPRIE

Cerebrovascular Disease
- 24.6%
- 7.3%
- 3.3%
- 3.8%

Coronary Artery Disease
- 29.9%
- 3.3%
- 11.9%

Peripheral Arterial Disease
- 19.2%

26% overlap of 2 vascular beds

Data on file, Sanofi-Synthelabo Inc.
CAPRIE Study
Clopidogrel versus Aspirin in Patients at Risk of Ischemic Events
Rationale

• Patients who have atherosclerotic disease (recent MI, recent ischemic stroke, or established PAD) are at risk for subsequent ischemic events and will benefit from antiplatelet therapy

• Atherosclerosis is a generalized vascular disease

• Antiplatelet agents have been proven to be effective in diverse manifestations of atherosclerotic disease

Methodology

<table>
<thead>
<tr>
<th>Study Design</th>
<th>Prospective, randomized, blinded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Patients</td>
<td>19,185 patients with atherosclerotic vascular disease</td>
</tr>
<tr>
<td>Patient Types Included</td>
<td>Recent ischemic stroke (≤ 6 mo)</td>
</tr>
<tr>
<td></td>
<td>Recent MI (≤ 35 d)</td>
</tr>
<tr>
<td></td>
<td>Established peripheral arterial disease</td>
</tr>
<tr>
<td>Study Drugs</td>
<td>Clopidogrel bisulfate: 75 mg qd</td>
</tr>
<tr>
<td></td>
<td>Aspirin: 325 mg qd</td>
</tr>
<tr>
<td>Treatment Duration</td>
<td>Up to 3 yrs (mean 1.6 yr)</td>
</tr>
<tr>
<td>Investigational Centers</td>
<td>304 in 16 countries, including the US</td>
</tr>
</tbody>
</table>
Inclusion Criteria

<table>
<thead>
<tr>
<th>Recent Ischemic Stroke</th>
<th>Recent Myocardial Infarction</th>
<th>Established Peripheral Arterial Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Presumed ischemic origin</td>
<td>• Onset ≤35 days before randomization</td>
<td>• Current intermittent claudication AND</td>
</tr>
<tr>
<td>• Onset ≥1 wk and ≤ 6 mo before randomization</td>
<td>Two of:</td>
<td>Ankle-brachial index ≤0.85; 2 readings on separate days OR</td>
</tr>
<tr>
<td>• Persistent neurologic signs ≥1 wk from onset</td>
<td>– Ischemic pain ≥20 min</td>
<td>• Previous intervention (amputation, reconstructive surgery, or angioplasty)</td>
</tr>
<tr>
<td>• CT or MRI ruling out intracranial hemorrhage, nonrelevant intracranial disease</td>
<td>– CK, CK-MB, LDH, or AST 2x normal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– New ≥40 msec Q waves in ≥2 adjacent leads or new dominant R wave in V₁</td>
<td></td>
</tr>
</tbody>
</table>
Inverse Relationship Between ABI and Risk of Cardiovascular Events

10.2% Increase in Relative Risk per 0.1 decrease in ABI ($P = 0.039$)

Efficacy of Clopidogrel vs Aspirin in MI, Ischemic Stroke, or Vascular Death (N = 19,185)

CAPRIE Study

Efficacy of Clopidogrel vs Aspirin in MI, Ischemic Stroke, or Vascular Death (N = 19,185)

<table>
<thead>
<tr>
<th>Months of Follow-Up</th>
<th>Cumulative Event Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>28</td>
<td>21</td>
</tr>
<tr>
<td>32</td>
<td>24</td>
</tr>
<tr>
<td>36</td>
<td>27</td>
</tr>
</tbody>
</table>

Overall Relative Risk Reduction²

- **Aspirin:** 5.83%¹
- **Clopidogrel:** 5.32%¹

- **P = 0.045²**

*ITT analysis.
2. PLAVIX Prescribing Information.

Median Follow-up = 1.91 years

- **Aspirin:** 8.7%*²
- **Clopidogrel:**

PAD 23.7%

RR Reduction ²
Lipid Treatment

- Placebo
- Simvastatin

RR = 0.62
P < 0.008
PAD Management: Antiplatelet Therapies

• Lifetime antiplatelet therapy recommended for patients at risk for ischemic events \(^1,^2\)

• Clopidogrel is the only oral antiplatelet therapy indicated for reducing the risk of MI, stroke, and vascular death in patients with established PAD \(^3\)

\(^2\) Clagett GP, Krupski WC. *Chest*. 1995;108(suppl 4):431S-443S.

\(^3\) Plavix\(^\circledR\) (clopidogrel bisulfate) Prescribing Information. March 2001.
Symptomatic Therapies

<table>
<thead>
<tr>
<th>Therapy</th>
<th>Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentoxifylline (Trental®)*</td>
<td>• ↓ Blood viscosity</td>
</tr>
<tr>
<td>Cilostazol (Pletal®)†</td>
<td>• ↓ Platelet aggregation</td>
</tr>
<tr>
<td></td>
<td>• Trigger vasodilation</td>
</tr>
<tr>
<td></td>
<td>• Improve lipid profile</td>
</tr>
</tbody>
</table>

*Trental is a registered trademark of Aventis Pharmaceuticals Inc.
†Pletal is a registered trademark of Otsuka America Pharmaceutical, Inc.

Maximal Walking Distance
Before and After Drug Withdrawal

Cilostazol 100 mg bid (n=16)
Pentoxifylline 400 mg tid (n=13)
Placebo (n=16)

Treatment of PAD
Effect of Drug Therapy on Walking Distance

Meta-analysis of 4 randomized, placebo-controlled trials

<table>
<thead>
<tr>
<th>Compound, dose</th>
<th>N</th>
<th>Placebo</th>
<th>Treatment Favored</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentoxifylline, 1200 mg/day</td>
<td>698</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cilostazol, 200 mg/day</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>516</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cilostazol, 100 mg/day</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>239</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cilostazol, 200 mg/day</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>81</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Relative Increase in Maximum Walking Distance
(ratio of change in exercise performance versus placebo)

Most Common Adverse Event

- **Headache**
- **Diarrhea**
- **Abnormal Stools**
- **Palpitations**

Exercise for PAD?

• Your legs hurt when you walk so go out and walk?
Requirements of Exercise Programs

A successful program includes
5 sessions per week (3 supervised + 2 unsupervised)

PAD diagnosis
12-week supervised program
Lifetime maintenance

Effect of Exercise Training on Walking Ability in PAD

Controlled trials
Uncontrolled trials

Treatment of PAD
Effect of Exercise Training

Meta-analysis of 21 Studies

- Exercise Training
- Control

Onset of Claudication Pain
Maximal Claudication Pain

Treatment of PAD
Effect of Exercise Components on Walking Distance

<table>
<thead>
<tr>
<th>Exercise Component</th>
<th>Duration</th>
<th>Frequency</th>
<th>Length of Program</th>
<th>Training End Point</th>
<th>Mode of Exercise</th>
<th>Walking Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise Duration</td>
<td>< 30 min/session</td>
<td>144 ± 419</td>
<td></td>
<td></td>
<td>Walking</td>
<td>287 ± 127</td>
</tr>
<tr>
<td></td>
<td>≥ 30 min/session</td>
<td>653 ± 364 *</td>
<td></td>
<td></td>
<td>Combination</td>
<td>512 ± 483 *</td>
</tr>
<tr>
<td>Exercise Frequency</td>
<td>< 3 session/wk</td>
<td>249 ± 350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 3 sessions/wk</td>
<td>541 ± 263 *</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of Program</td>
<td>< 26 weeks</td>
<td>275 ± 228</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 26 weeks</td>
<td>519 ± 409 *</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training End Point</td>
<td>Onset of Pain</td>
<td>196 ± 78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Near-Maximal Pain</td>
<td>607 ± 427 *</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* $P < 0.05$

Exercise Program

![Bar graph showing walking time by protocol period (Entry, Mid, Exit) for Control and Exercise groups. The graph indicates a significant difference (*P < 0.05) between the groups at the exit stage.]
ACC/AHA 2005 Guidelines

Treatment of Claudication

Exercise

- Supervised exercise training should be the initial treatment
 - 30-45 minute sessions
 - 3 or more times per week
 - At least 12 weeks

- Value of unsupervised exercise programs is not well established

Drug therapy

- Cilostazol 100 mg twice daily
 - Can improve symptoms & increase walking distance
 - Indicated for lifestyle-limiting claudication
 - Contraindicated in patients with heart failure

- Pentoxifylline 400 mg three daily
 - Consider as an alternative to cilostazol
 - Effectiveness of pentoxifylline is marginal and not well established
Intermittent Claudication Exercise Programs

Pros
- Effective at improving exercise performance, walking distance, and physical functioning
- Safe, with no recorded morbidity or mortality
- Potential to improve other atherosclerosis risk factors
- Cost-effective

Cons
- Require motivated and compliant patient
- Limited availability of supervised programs
Follow-up and Counseling

• Set reasonable expectations for patient
 – Exercise program
 – Other lifestyle changes
• Refer patient for supervised walking program, if available
Follow-up Care for Patients in PAD Rehabilitation

- Reevaluate patient 90 days after initiation of therapeutic program
 - Assess symptomatic status of limb
 - Reassess atherosclerotic risk factor intervention and antiplatelet therapy
 - Review compliance with home exercise therapy
 - Consider pharmacologic therapy for nonresponders
- Continue monitoring every 90 days until patient improves
 - Thereafter, monitor every 6 months
Indications for Revascularization for Intermittent Claudication

- Lifestyle-limiting symptoms
- Continued disability despite appropriate nonsurgical management
- Technically feasible revascularization options exist
- Expectation of favorable risk/benefit ratio
Surgical and Endovascular Treatment Options

• Surgical
 – endarterectomy
 – bypass

• Endovascular
 – percutaneous transluminal angioplasty
 – percutaneous transluminal angioplasty with stent placement
Revascularization for Aorto-Iliac Arterial Disease

Aortofemoral Bypass

- Primary patency at 5 years of 81-85% \(^1\)
- Perioperative mortality 5-8% \(^1\)
- Reserved for severe diffuse disease cases \(^2\)
- Indicated for Rutherford class \(\geq 3\) \(^2\)

Percutaneous Intervention

- Patency at 5 years of 65-80% \(^1\)
- Perioperative mortality 0.1% \(^1\)
- Treatment of choice \(^3\)
- Indicated for Rutherford class \(\geq 2\) \(^2\)

Lesion-guided approach for treatment of aorto-iliac disease

A Endovascular is procedure of choice

B Endovascular is preferred therapy

C Surgery is preferred for good-risk

D Surgery is procedure of choice

Treatment of PAD
Revascularization for Femoro-Popliteal Disease

Femoro-Popliteal Bypass Surgery
- Primary patency at 5 years of 60-80%
- Autologous veins preferred to synthetic grafts
- Perioperative mortality 0-3%
- Indicated for Rutherford class \geq 3

Femoro-Popliteal Angioplasty
- Patency at 2-5 years ranges between 40-70%
- Technical problems due to several anatomic issues:
 - Occlusions vs stenosis
 - Diffuse disease
 - Adductor canal
 - Disease in run off vessels
- Perioperative mortality is very low
- Indicated for Rutherford class \geq 2
Lesion-guided approach for treatment of femoro-popliteal disease

A
Endovascular is procedure of choice

B
Endovascular is preferred therapy

C
Surgery is preferred for good-risk

D
Surgery is procedure of choice

ACC/AHA 2005 Guidelines

Treatment of Claudication

Endovascular therapies
- Only indicated for patients with
 - Vocational or lifestyle-limiting disability;
 - Reasonable likelihood of symptomatic improvement;
 - Prior failure of exercise or pharmacological therapy; and,
 - Favorable risk-benefit ratio
- Not indicated as a prophylactic treatment
- Preferred method for revascularization of TASC type A iliac and femoropopliteal arterial lesions

Surgery
- Indicated for patients
 - With significant functional disability from symptoms
 - Who are unresponsive to exercise or pharmacotherapy
 - Who have a reasonable likelihood of symptomatic improvement
- Surgical intervention is not indicated to prevent progression to limb-threatening ischemia
Exercise vs Stenting for Claudication

Change in WIQ

- Pain Severity: OMC - 16.3, Exercise - 26.3, Stenting - 40.4
- Walking Distance: OMC - 25.1, Exercise - 1.47, Stenting - 16.5
- Walking Speed: OMC - 30.8, Exercise - 24, Stenting - 29.3
- Stair Climbing: OMC - -0.5, Exercise - 10.2, Stenting - 24

CLEVER: Circulation. 2012;125:130-139
Exercise vs Stenting for Claudication

Change in Community Walking

Pair-wise comparisons

<table>
<thead>
<tr>
<th></th>
<th>Difference (steps)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise vs. OMC</td>
<td>78</td>
<td>0.06</td>
</tr>
<tr>
<td>Stent vs OMC</td>
<td>120</td>
<td>0.10</td>
</tr>
<tr>
<td>Exercise vs Stenting</td>
<td>42</td>
<td>0.47</td>
</tr>
</tbody>
</table>

CLEVER: Circulation. 2012;125:130-139
Albany Vascular Institute Experience

Intrainguinal Bypass for Claudication

1987-1997

- 4468 lower extremity bypass operations performed
- 409 (9%) indication=claudication
Case

- 41 year old white male
- CC: Right calf cramping at 1 block
- Sx: worsening over last 2 months
Case Study

- PMH: S/P PTCA at age 38 for angina
- Family History: Father expired from MI at age 51, Brother nonfatal MI age 45
- Smoke: 2 ppd
- Social History: UPS delivery
- Medications: none
Case Study

- Physical exam
 - BP 114/74 HR 75 5 feet 10in 165 lbs.
 - Lungs clear, Cor RRR no murmurs
 - Abdomen: negative
 - Carotids without bruits
 - Absent distal pulses decreased right femoral pulse
Case Study

- Hct 46%
- LFTS normal
- PT/PTT normal
Case Study

• Abnormal ABI Bilateral
• PVRS dampened at thigh bilateral
Case Study

- What's the next step?
 - Lipid management
 - Plavix
 - Smoking cessation
 - Cilostazol
 - Exercise
Case Study

• 3 month follow-up
• Walking distance decreased no longer can work
• Lipids at goal
• On Clopidogrel
Case Study

- Underwent aortoiliac endarterectomy
Case Study

- Postoperative PVR’S
- Continues in follow-up
Clinical Treatment Goals for Patients With PAD

- Improve functional status
 - Improve symptoms
 - Improve QOL
 - Improve exercise capacity
- Preserve the limb
 - Decrease the need for revascularization
- Prevent progression of atherosclerosis
- Reduce cardiac and cerebrovascular mortality
 - Reduce nonfatal events such as MI and stroke
- Preserve the limb
- Prevent progression of atherosclerosis
- Reduce cardiac and cerebrovascular mortality
 - Reduce nonfatal events such as MI and stroke
- Improve QOL
- Improve exercise capacity
- Improve symptoms
- Decrease the need for revascularization
- Prevent progression of atherosclerosis
- Reduce cardiac and cerebrovascular mortality
 - Reduce nonfatal events such as MI and stroke